Step Up Transformers Explained

Step-Up Transformer (SUT) Loading — Full Calculation Guide

Optimise MC cartridge loading with exact math: reflected load, secondary resistor, effective input impedance, and adjusted gain.

Why SUT loading matters

A Step-Up Transformer reflects your MM phono input impedance back to the cartridge. Adding a resistor across the secondary lets you fine-tune that load. Getting it right improves tonal balance, noise performance, headroom and correct system integration.

SEO: moving coil cartridge, moving coil SUT, step-up transformer loading, Lundahl SUT, phono preamp.

Definitions & symbols

  • \(N\): transformer step-up ratio (e.g. \(1{:}10 \Rightarrow N=10\))
  • \(Z_{\text{phono}}\): phono input impedance (typically \(47\,\text{k}\Omega\))
  • \(R_{\text{load}}\): added resistor across the secondary (optional)
  • \(Z_{\text{sec,tot}}\): total load at the secondary (phono ∥ \(R_{\text{load}}\))
  • \(Z_{\text{cart}}\): effective input impedance at the primary (what the cartridge “sees”)
  • \(R_s\): cartridge internal (source) resistance
  • (Optional) \(R_P\), \(R_S\): primary & secondary DCR (Ω)

1) Secondary load

\[ Z_{\text{sec,tot}} \;=\; Z_{\text{phono}} \,\big\|\, R_{\text{load}} \;=\; \left(\frac{1}{Z_{\text{phono}}}+\frac{1}{R_{\text{load}}}\right)^{-1} \]

2) Primary load (what the cartridge sees)

\[ Z_{\text{cart}} \;=\; \frac{Z_{\text{sec,tot}}}{N^2} \]
No-resistor rule: If \(Z_{\text{target}}\ge Z_{\text{phono}}/N^2\), you cannot raise load with a passive shunt. Leave the secondary unloaded.

3) Solve the added secondary resistor

For a target cartridge load \(Z_{\text{target}}\):

\[ Z_{\text{sec,req}} = N^2\,Z_{\text{target}},\qquad R_{\text{load}} = \left(\frac{1}{Z_{\text{sec,req}}} - \frac{1}{Z_{\text{phono}}}\right)^{-1} \]

Pick the nearest E24 value, then recompute achieved \(Z_{\text{cart}}\) and adjusted gain.

4) Adjusted gain (divider loss)

Cartridge source resistance and the primary load form a divider that trims the ideal ratio \(N\):

\[ \frac{V_{\text{sec}}}{V_{\text{cart}}} = N\cdot \frac{Z_{\text{cart}}}{Z_{\text{cart}}+R_s},\qquad G_{\text{eff,dB}} = 20\log_{10}\!\left(N\cdot \frac{Z_{\text{cart}}}{Z_{\text{cart}}+R_s}\right) \]

Including DCRs: add \(R_P\) in series with the cartridge on the primary; add \(R_S\) in series on the secondary before the parallel network.

5) Worked example

Target 100 Ω with 1:8 into 47 kΩ. Required secondary total \(=6.4\) kΩ; solve gives \(R_{\text{load}}\approx 7.41\) kΩ → use 7.5 kΩ. Achieved \(Z_{\text{cart}}\approx 101\) Ω. With \(R_s\approx 40\) Ω, effective gain ≈ 15.2 dB.

6) Quick decision rules

  • \(Z_{\text{target}}\ge Z_{\text{phono}}/N^2\) → no resistor.
  • Otherwise add a shunt across the secondary and re-check \(G_{\text{eff}}\).
  • If you’re giving up too much gain, consider a different \(N\) or a higher target load.

7) Live calculator

Custom Transformer & E24 Resistor Calculator

Tip: Press Enter to calculate.

E24 Resistor Recommendation
Theoretical Resistor: N/A
Nearest E24 Resistor: N/A
Effective Input Impedance: N/A
Voltage Gain: N/A
Output Voltage: N/A

How to use

  • Enter transformer DCRs (Ω) and step-up ratio.
  • Enter phono input in (e.g. 47 for 47 kΩ).
  • Enter your desired cartridge load (Ω). Optionally add cartridge DC resistance and output in mV.
  • Click Calculate or press Enter.

“Effective Input Impedance” = Primary DCR + reflected (Secondary DCR + parallel of phono input and E24 shunt)/n². Gain includes transformer ratio, DCR losses, and loading.